JOM 23553

Preparation and X-ray structure of a platinum(II) hydroxycarbonyl, $Pt(CO_2H)\{C_6H_3(CH_2PPh_2)_2-2,6\}$, containing a *trans*-spanning, tridentate P,C,P-ligand ***

Martin A. Bennett, Hong Jin and Anthony C. Willis

Research School of Chemistry, Australian National University, GPO Box 4, Canberra, A.C.T. 2601 (Australia) (Received January 18, 1993)

Abstract

The ligand 1,3-{bis(diphenylphosphino)methyl}benzene, 1,3-C₆H₄(CH₂PPh₂)₂ (**3a**) undergoes cyclometallation on heating in 2-methoxyethanol either with PtCl₂(CD) or, in the presence of 2-methylaminoethanol, with PtCl₂(COD) to give PtCl{C₆H₃(CH₂PPh₂)₂-2,6} (**6**). In this complex, the tridentate anionic ligand C₆H₃(CH₂PPh₂)₂-2,6 (**2a**) is attached to platinum via a σ -bonded carbon atom and mutually trans-phosphorus atoms. Successive treatment of **6** with AgBF₄ and KOH gives the hydroxo-complex Pt(OH)(**2a**) (**11**), which reacts with CO to give the corresponding hydroxycarbonyl Pt(CO₂H)(**2a**) (**12**). The structure of **12** · 1.5C₆H₆ was determined by X-ray diffraction methods and shown to consist of a dimer in which two planar *trans*-Pt(CO₂H)(**2a**) units are joined by hydrogen-bonded carboxylate groups. The hydrogen-bonded O · · · O distance [2.750(4)Å] is significantly larger than that in *trans*-Pt(CO₂H)(CO

1. Introduction

An interesting feature of the chemistry of monomeric organoplatinum(II) hydroxides and alkoxides is the fact that CO inserts into the Pt-O bond more readily than into the Pt-C bond [1]. Thus, complexes containing bidentate ditertiary phosphines, *cis*-Pt(OH)R(L-L) (R = CH₃, CF₃, C₆H₉; L-L = dppe, dppp, vdpp) react with CO under ambient conditions to give the corresponding platinum(II) hydroxycarbonyls (metallacarboxylic acids) *cis*-Pt(CO₂H)R(L-L) [2-5]; insertion into the Pt-C bond occurs only under more forcing conditions or with longer reaction times, especially when L-L = dppp. Similarly, *trans*-Pt(OH)(C₆H₅)- $(\text{PEt}_3)_2$ reacts with CO to give *trans*-Pt(CO₂H)(C₆H₅)-(PEt₃)₂ (1), which is a hydrogen-bonded dimer in the solid state but is in equilibrium with the monomer in organic solvents [6]. It would be of interest to know how the structures and properties of the hydroxycarbonyls in the *trans*-series are influenced by the nature of the tertiary phosphine. Unfortunately, attempts to prepare analogues of 1 containing triphenylphosphine or tricyclohexylphosphine by treatment of the appropriate hydroxo-complexes with CO were unsuccessful, apparently owing to competitive displacement of the tertiary phosphine by CO leading to platinum(0) carbonyl clusters.

An obvious way to prevent or slow down this process is to strap the σ -bonded carbon atom and the two trans-tertiary phosphine ligands together in the form of an anionic tridentate ligand. One suitable class of ligand for this purpose seemed to be 2,6-{bis(diorganophosphino)methyl}phenyl, C₆H₃(CH₂PR₂)₂-2,6 (2), which in principle could be derived by cyclometallation of 1,3-{bis(diorganophosphino)methyl}benzene (3). The preparation of hydroxo- and hydroxycarbonylplatinum(II) complexes containing **2a** (R = Ph), and

Correspondence to: Professor M.A. Bennett.

Dedicated to Professor Gian Paolo Chiusoli in recognition of his important contributions to organometallic chemistry and its applications in organic synthesis.

^{**} Abbreviations: COD = 1,5-cyclooctadiene, C_8H_{12} ; $C_6H_9 = 1$ -cyclohexenyl; dppe = 1,2-bis(diphenylphosphino)ethane, Ph_2PCH_2 - CH_2PPh_2 ; dppp = 1,3-bis(diphenylphosphino)butane; vdpp = cisvinylene-1,2-bis(diphenylphosphine), cis-Ph_2PCH = CHPPh_2.

the X-ray structural analysis of the latter complex are described in this paper.

2. Results and discussion

It was first necessary to develop syntheses of halogenoplatinum(II) complexes containing 2a or 2b as precursors to the corresponding hydroxides and hydroxycarbonyls. Moulton and Shaw [7] reported that $1,3-{bis(di-t-butylphosphino)methyl}benzene, 1,3-C_6 H_3(CH_2P^tBu_2)_2$ (3b) reacts with $PtCl_2(NC^tBu)_2$ in hot 2-methoxyethanol to give the monomeric cyclometallated complex $PtCl{C_6H_3(CH_2P^tBu_2)_2}$ (4) in 32% yield, together with a polymeric species, probably trans-[PtCl₂ (3b)]_n. We found that 3b reacted with PtCl₂(NCPh)₂ under the same conditions to give the polymer as the predominant product, yields of 4 generally being less than 10%. The monomeric cyclometallated iodo-complex, $PtI(C_6H_3(CH_2P^tBu_2)_2)$ (5) was, however, obtained in 80% yield as a pale yellow, airstable solid by heating PtI₂(COD) with 3b in 2methoxyethanol. Unfortunately, the iodo group of 5 could not be removed by treatment with AgBF₄ or AgPF₆, probably because of steric hindrance by the bulky t-butyl groups, so we concentrated on complexes derived from the corresponding diphenylphosphino ligand 2a.

Rimml and Venanzi [8,9] showed that 1,3-{bis-(diphenylphosphino)methyl}benzene, 1,3- $C_6H_4(CH_2-PPh_2)_2$ (3a) reacts with anhydrous PtCl₂ or PtBr₂ in aqueous acetone over 10 d at room temperature to give the cyclometallated complexes PtX{ $C_6H_3(CH_2PPh_2)_2-$ 2,6} (X = Cl (6), Br (7)) in about 30% yield; the main products are mixtures of oligomeric species, *cis*-[PtX₂-(2a)]_n. Reaction of *cis*-PtCl₂(PPh₃)₂ with 3a gave the cyclometallated cation [Pt(PPh_3){ $C_6H_3(CH_2PPh_2)_2$]⁺ (8) in good yield; this reacted with iodide ion to give the cyclometallated iodo-complex 9 and on treatment successively with sulfur (to remove PPh_3) and with KCl gave 6.

We found that 6 is conveniently obtained in high yield by heating 3a either with $PtCl(CH_3)(COD)$ in 2-methoxyethanol (eqn. (1)) or with $PtCl_2(COD)$ in mesitylene in the presence of about one equivalent of 2-methylaminoethanol (eqn. (2)).

$$PtCl(CH_{3})(COD) + 1,3-C_{6}H_{4}(CH_{2}PPh_{2})_{2} \longrightarrow$$

$$PtCl\{C_{6}H_{3}(CH_{2}PPh_{2})_{2}-2,6\} + CH_{4} \quad (1)$$

$$PtCl_{2}(COD) + 1,3-C_{6}H_{4}(CH_{2}PPh_{2})_{2} \longrightarrow$$

$$PtCl\{C_{6}H_{3}(CH_{2}PPh_{2})_{2}-2,6\} + HCl \quad (2)$$

Both reactions may proceed by oxidative addition of the aromatic C-H bond in the 2-position of **3a** and subsequent reductive elimination of CH₄ or HCl; removal of the latter is presumably assisted by the basic alcohol. Similar cleavage of a vinylic C-H bond has been observed in the reaction of o-Ph₂PC₆H₄ CH=CHCHMeC₆H₄PPh₂-o with PtCl(CH₃)(COD) to give PtCl(o-Ph₂PC₆H₄CH=CCHMeC₆H₄PPh₂-o) [10]. Reaction of PtI₂(COD) with **3a** in refluxing 2methoxyethanol gives the monomeric cyclometallated complex PtI{C₆H₃(CH₂PPh₂)₂} (9) directly in 90% yield. It has been noted previously that iodo- and bromo-tertiary phosphine complexes undergo cyclometallation more readily than the corresponding chloro-complexes [11].

Analytical and selected IR data for platinum(II) complexes of 2a and 2b are summarized in Table 1; NMR data are collected in Table 2. The ¹H NMR spectra of the cyclometallated complexes 5, 6 and 9 exhibit a characteristic virtual triplet with ¹⁹⁵Pt satellites at δ 3-4 ppm due to the benzylic protons, which are coupled with the mutually *trans*-phosphorus atoms $(^{2}J(P-H) + ^{4}J(P-H) ca. 8-9 Hz; ^{3}J(Pt-H) ca. 25 Hz).$ The ³¹P{¹H} NMR spectra correspondingly show a singlet with ¹⁹⁵Pt satellites ($^{1}J(Pt-P)$ ca. 3000 Hz), the magnitude of the coupling constant being typical of mutually trans tertiary phosphine ligands in aryl cyclometallated platinum(II) complexes [12]. The IR spectrum of the chloro-complex 6 shows a band of medium intensity at 290 cm⁻¹ assignable to ν (Pt-Cl) *trans* to a σ -bonded carbon atom [13].

Treatment of 6 with AgBF₄ in THF causes precipitation of AgCl, and presumably generates a solventocation [Pt(THF){C₆H₃(PPh₂)₂-2,6}]⁺ (10), which reacts with KOH to give the pale yellow hydroxo-complex Pt(OH){C₆H₃(PPh₂)₂-2,6} (11). The IR spectrum of 11 in dichloromethane contains a weak, broad band at 3620 cm⁻¹ due to ν (OH) and the ¹H NMR spectrum shows a triplet with ¹⁹⁵Pt satellites at δ 0.21 (³J(P-H)

TABLE 1. Analytical and IR data for PtX{C₆H₃(CH₂PR₂)₂-2,6}

Com- pound No.	R	X	Analysis (found (calcd.) (%))			IR (cm ⁻¹) ^a
			С	н	Р	
5	^t Bu	I	40.2(40.3)	6.1(6.1)	8.4(8.7)	
6 ^b	Ph	Cl	53.4(53.2)	4.25(4.05)	8.9(8.6)	290[v(PtCl)]
11	Ph	ОН	56.5(56.1)	4.2(4.1)	8.8(9.0)	3620w[v(OH)] ^c
12	Ph	CO ₂ H	55.9(55.5)	4.1(3.95)		$2660m[\nu(OH)]^{d}$
		-				1580vs[v(C=O)]
						1030s[v(C-O)]
13 ^e	Ph	CO_2Me	53.7(53.45)	4.7(4.5)		1620vs[v(C=O)]
		_				1020vs[v(C-O)]

^a In KBr disc, except where stated otherwise. ^b Calcd. for monohydrate. ^c In CD₂Cl₂. ^d IR(CH₂Cl₂) 3610w [ν (OH)], 1620s, 1590m [ν (C=O)]. ^c Calcd. for dihydrate.

5.2 Hz, ${}^{2}J(Pt-H)$ 28.0 Hz). This signal disappears on addition of D₂O, and can therefore be assigned to the hydroxyl proton; the other features of the ¹H and ³¹P NMR spectra are similar to those of **6** and **9**. Complex 11 represents one of the rare examples of a hydroxobis(tertiary phosphine)platinum(II) complex for which the OH resonance and the accompanying coupling to ³¹P and ¹⁹⁵Pt are readily observed [1]. The magnitude of ²J(Pt-OH) for 11 is between the values of 21.0 Hz observed for *trans*-Pt(OH)(CF₃)(PPh₃)₂ and 35.0 Hz in *trans*-Pt(OH)(CF₃)(PMePh₂)₂ [4].

It is worth noting that the N-donor analogue of 2a, $C_6H_3(CH_2NMe_2)_2$ -2,6, forms a hydroxonickel(II) complex, but the corresponding hydroxopalladium(II) and hydroxoplatinum(II) complexes are unknown [14].

Treatment of the hydroxo-complex 11 in benzene with CO under ambient conditions causes the hydroxycarbonyl complex, $Pt(CO_2H)(C_6H_3(PPh_2)_2-2,6)$ (12) to precipitate as colourless crystals; the corresponding ¹³C-labelled complex 12a is prepared similarly by use of ¹³CO. The spectroscopic properties of 12 in general resemble those of other platinum(II) hydroxycarbonyls. The IR spectrum in a KBr disk shows a medium-intensity band at 2660 cm⁻¹ due to ν (OH); in dichloromethane, this band is absent and is replaced by a band at 3614 cm⁻¹. These observations suggest that 12 contains hydrogen-bonded $O-H\cdots O$ units in the solid state but that it exists mainly as a monomer in CH_2Cl_2 . Correspondingly, the intense ν (C=O) band at 1580 cm^{-1} in the solid state IR spectrum shifts to 1620 cm^{-1} in CH₂Cl₂, though it is accompanied by a shoulder at 1590 cm⁻¹. In the ¹H NMR spectrum of 12 in DMSO- d_{δ} , there is a slightly broad resonance at δ 9.0 due to the hydroxyl proton, no coupling to ³¹P or ¹⁹⁵Pt being evident. The signal disappears on addition of D₂O and cannot be located in solvents other than DMSO- d_6 , presumably because of self-exchange. The ¹³C¹H NMR spectrum of **12a** shows a triplet with ¹⁹⁵Pt satellites at δ 205 (¹J(Pt-C) 901 Hz, ²J(P-C) 10 Hz) due to the carboxylate carbon atom. The magnitude of ${}^{1}J(Pt-C)$ in 12a is less than the values of ca. 1300 Hz observed for hydroxycarbonyls such as cis- $Pt(CO_2H)(C_6H_0)(dppp)$ [3] and trans- $PtCl(CO_2H)$ - $(PEt_3)_2$ (1) [15], probably reflecting the high transinfluence of the σ -aryl group relative to P-donors or chloride. However, the fact that ${}^{1}J(Pt-C)$ in 12a is significantly larger than that in *trans*-Pt(CO_2H)(C_2H_5)- $(PEt_3)_2$ (820 Hz) [6] indicates that the nature of the tertiary phosphine in the cis-position may also be important.

Like 1, complex 12 reacts readily with methanol to give the corresponding methoxycarbonyl complex, Pt(CO₂Me)(2a), whose ¹H NMR spectrum shows a singlet at δ 3.67 due to the CO₂Me group that overlaps the resonance due to the CH₂ groups of 2a. In the IR spectrum there are intense absorptions at 1620 cm⁻¹ and 1020 cm⁻¹ due to ν (C=O) and ν (C-O) modes. In other respects, however, 1 and 12 differ in their chemistry. Thus, on heating *in vacuo* or in toluene, 12 eliminates CO to give 11 and other unidentified products, whereas 1 gives a dinuclear μ -carbon dioxide complex {Pt(C₆H₅)(PEt₃)₂} (μ -CO₂) [6]. Attempts to form a μ -CO₂ complex of platinum(II) containing 2a by reaction of 11 with 12 in solution at room temperature were unsuccessful.

X-ray structural analysis of a crystal of $12 \cdot 1.5C_6H_6$ shows that it consists of discrete dimers having exact C_i

Compound No.	R	X	Solvent	δ(CH ₂)(<i>N</i> , ³ <i>J</i> (P–H) ^a	Other	$\delta(P)(^{1}J(Pt-P)$	
5	^t Bu	I	CD ₂ Cl ₂	2.97 (t, 7.6, 22)		63.0(2833)	
6	Ph	Cl	CD_2Cl_2	2.59 (t, 9.6, 26)		34.3(2956)	
9	Ph	I	CD_2Cl_2	3.97 (t, 8.8, 26)		36.3(2879)	
11	Ph	OH	C ₆ D ₆	3.59 (t, 9.0, 27)	0.21 (t, OH), ³ <i>J</i> (P–H) 5.2, ² <i>J</i> (Pt–H) 28.0	30.5(3064)	
12 ^b	Ph	CO ₂ H	$C_6 D_6$	3.10 (t, 9.8, 26)	9.1 (s, CO ₂ H) ^c	35.2(2966)	
13	Ph	CO ₂ Me	$C_6 D_6$	3.70 (t, 8.4, 28)	3.67 (s, OMe)	35.4(2993)	

TABLE 2. NMR Data for PtX{C₆H₃(CH₂PR₂)₂-2,6}

^a Coupling constants (J) in Hz, $N = {}^{2}J(P-H) + {}^{4}J(P-H)$. ^b $\delta({}^{13}CO_{2}H)$ in C₆D₆: 205 (t, ${}^{2}J(P-C)$ 10, ${}^{1}J(Pt-C)$ 901). ^c In DMSO-d₆.

Fig. 1. The hydrogen-bonded dimer unit formed by a pair of centrosymmetrically related $Pt(CO_2H)\{C_6H_3(CH_2PPh_2)_2-2,6\}$ molecules.

symmetry that contain two $Pt(CO_2H)\{C_6H_3(CH_2PPh_2)_2-2,6\}$ units held together by closed hydrogenbonded carboxylate groups, as shown in Fig. 1. The structure of each unit is illustrated in Fig. 2, together with the atom nomenclature.

Coordinates and isotropic thermal parameters for the non-hydrogen atoms are listed in Table 3, selected metrical parameters are in Table 4. The association in 12 is similar to that found in *trans*-Pt(CO₂H)(C₆H₅)-(PEt₃)₂ (1) and in many organic carboxylic acids, but is probably weaker. Thus, the hydrogen-bonded $0 \cdots 0$ separation of 2.750(4) Å is significantly greater than that in 1 [2.695(8)Å] and is also above the range commonly found in organic carboxylic acids [2.63–2.67 Å]. The bond lengths and angles in the carboxylate group [r{C(10)–O(11)} 1.302(5) Å, r{C(10)–O(12)} 1.282(4) Å, \measuredangle Pt-C(10)–O(11) 119.2(2)°, \measuredangle Pt-C(10)–

Fig. 2. View of $\overline{Pt(CO_2H)(C_6H_3(CH_2PPh_2)_2-2,6)}$ (12) indicating the labelling of the non-hydrogen atoms (atoms of each phospine phenyl ring are labelled sequentially C(nml)-C(nm6) in the directions shown). Ellipsoids enclose 50% probability levels; hydrogen atoms have been deleted for clarity.

TABLE 3. C	oordinates and	isotropic	thermal	parameters	for the	
non-hydrogen	atoms in [Pt(C	O ₂ H)(C ₆ H	I3(CH2P)	Ph ₂) ₂ -2,6}·1.	5C6H6-	
(12·1.5C ₆ H ₆)) ^a					

Atom	x	у	z	U _{eq}
Pt	0.26070(1)	0.12655(1)	0.23826(1)	0.0332(1)
P(1)	0.38574(9)	0.22765(8)	0.28411(6)	0.0377(6)
P(2)	0.1119(1)	0.03108(8)	0.23976(7)	0.0402(7)
C(1)	0.1396(3)	0.2038(3)	0.3549(2)	0.038(2)
C(2)	0.1582(4)	0.2975(3)	0.3984(3)	0.043(3)
C(3)	0.0840(5)	0.3441(4)	0.4802(3)	0.057(3)
C(4)	-0.0131(5)	0.3033(4)	0.5197(3)	0.064(4)
C(5)	-0.0375(4)	0.2143(4)	0.4772(3)	0.056(3)
C(6)	0.0385(4)	0.1641(3)	0.3962(2)	0.041(3)
C(10)	0.3809(4)	0.0586(3)	0.1197(2)	0.043(3)
O(11)	0.3434(3)	0.1045(3)	0.0422(2)	0.059(2)
O(12)	0.4951(3)	-0.0245(3)	0.1180(2)	0.056(2)
C(111)	0.2604(4)	0.3460(3)	0.3520(3)	0.051(3)
C(121)	0.5044(4)	0.1427(3)	0.3610(3)	0.046(3)
C(122)	0.5831(5)	0.0307(4)	0.3346(3)	0.066(4)
C(123)	0.6752(6)	-0.0372(5)	0.3918(5)	0.094(6)
C(124)	0.6867(6)	0.0042(7)	0.4740(5)	0.102(7)
C(125)	0.6096(7)	0.1133(7)	0.5001(4)	0.102(7)
C(126)	0.5181(6)	0.1853(5)	0.4443(4)	0.076(5)
C(131)	0.4807(4)	0.2935(3)	0.2073(3)	0.046(3)
C(132)	0.4482(5)	0.3147(3)	0.1179(3)	0.057(3)
C(133)	0.5203(6)	0.3660(4)	0.0597(4)	0.075(5)
C(134)	0.6197(6)	0.3978(4)	0.0884(4)	0.084(5)
C(135)	0.6517(5)	0.3784(4)	0.1758(4)	0.077(5)
C(136)	0.5841(5)	0.3251(4)	0.2358(3)	0.060(4)
C(211)	0.0186(4)	0.0614(4)	0.3541(3)	0.056(3)
C(221)	-0.0137(4)	0.0761(3)	0.1586(3)	0.047(3)
C(222)	0.0144(4)	0.1310(4)	0.0806(3)	0.056(3)
C(223)	0.0754(6)	0.1591(5)	0.0143(4)	0.079(5)
C(224)	-0.1890(6)	0.1307(5)	0.0239(4)	0.086(5)
C(225)	-0.2189(5)	0.0793(5)	0.0996(5)	0.085(5)
C(226)	-0.1325(4)	0.0511(4)	0.1687(3)	0.062(4)
C(231)	0.1842(4)	-0.1267(3)	0.2306(3)	0.046(3)
C(232)	0.3239(4)	-0.1806(4)	0.2192(3)	0.058(3)
C(233)	0.3812(5)	- 0.2994(4)	0.2094(4)	0.073(4)
C(234)	0.3025(6)	-0.3648(4)	0.2112(4)	0.071(4)
C(235)	0.1629(6)	-0.3135(4)	0.2259(4)	0.075(5)
C(236)	0.1047(5)	-0.1951(4)	0.2349(4)	0.063(4)
C(51)	0.8966(9)	0.5261(9)	0.2672(7)	0.118(9)
C(52)	0.808(1)	0.632(1)	0.2737(6)	0.13(1)
C(53)	0.771(1)	0.6927(9)	0.197(1)	0.15(1)
C(54)	0.820(2)	0.644(2)	0.114(1)	0.22(3)
C(55)	0.908(2)	0.529(2)	0.1166(8)	0.22(2)
C(56)	0.9472(9)	0.4753(9)	0.192(1)	0.15(1)
C(61)	0.5334(7)	0.5345(6)	0.4166(4)	0.087(6)
C(62)	0.4017(6)	0.5746(5)	0.4529(4)	0.082(5)
C(63)	0.3678(6)	0.5403(5)	0.5359(5)	0.084(5)

 $\overline{{}^{\mathrm{a}} U_{\mathrm{eq}}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_{1}^{*} a_{j}^{*} a_{i} \cdot a_{j}.$

O(12) 123.3(3)°, \measuredangle O(11)-C(10)-O(12) 117.5(3)°] are close to the corresponding values in 1 and in carboxylic acids. The coordination about each platinum atom is essentially square planar, though some angular distortions are imposed by the tridentate C₆H₃(PPh₂)₂-2,6 ligand. The Pt-C(aryl) and Pt-C(carboxylate) distances [Pt-C(1) 2.066(3) Å; Pt-C(10) 2.058(3) Å] are equal,

TABLE 4. Selected interatomic distances	(Å) and angles (°) for [Pt(C	$\overline{O_2H}(C_6H_3(CH_2PPh_2)_2-2,6)$	1.5C ₆ H ₆ (12 · 1.5C ₆ H ₆) ^a

Pt-P(1)	2.2610(11)	Pt-P(2)	2.2691(12)
Pt-C(1)	2.066(3)	Pt-C(10)	2.058(3)
P(1)-C(111)	1.824(4)	P(1)-C(121)	1.813(4)
P(1)-C(131)	1.807(4)	P(2)-C(211)	1.840(4)
P(2)-C(221)	1.812(4)	P(2)-C(231)	1.827(4)
C(1)-C(2)	1.410(6)	C(1)-C(6)	1.408(6)
C(2)-C(3)	1.386(5)	C(2)-C(111)	1.511(6)
C(3)-C(4)	1.372(8)	C(4)-C(5)	1.384(8)
C(5)-C(6)	1.393(5)	C(6) - C(211)	1.505(7)
C(10)-O(11)	1.302(5)	C(10)-O(12)	1.282(4)
C(121) - C(122)	1.379(6)	C(121) - C(126)	1.383(7)
C(122) - C(123)	1,390(8)	C(123) - C(124)	1.355(11)
C(124) - C(125)	1.346(11)	C(125) - C(126)	1.392(9)
C(131) - C(132)	1.391(6)	C(131) - C(136)	1.385(7)
C(132)-C(133)	1,382(8)	$\alpha(133) - \alpha(134)$	1.348(10)
C(134)-C(135)	1.360(9)	C(135)-C(136)	1.382(8)
C(221) - C(222)	1,384(6)	C(221) - C(226)	1.389(7)
C(222)-C(223)	1.387(7)	C(223)-C(224)	1.358(10)
C(224) - C(225)	1.339(10)	C(225) - C(226)	1.394(8)
C(231) - C(232)	1.388(6)	C(231) - C(236)	1.379(7)
C(232) - C(233)	1.379(6)	$\alpha(233) - \alpha(234)$	1.345(9)
C(234) - C(235)	1.385(8)	$\alpha(235) - \alpha(236)$	1.376(6)
C(51) - C(52)	1.316(13)	$\alpha(51) - \alpha(56)$	1.26(2)
C(52) - C(53)	1.35(2)	C(53) - C(54)	1 35(2)
C(54) - C(55)	1.40(3)	C(55) = C(56)	1.33(2)
C(61) - C(62)	1.362(9)	$\alpha(61) - \alpha(63)'$	1 373(8)
C(62)-C(63)	1.344(9)		1075(0)
P(1) P: P(2)	1(1)(7(4))		04 + 5 (1- 0)
P(1) = P(1)	161.8/(4)	P(1) - Pt - C(1)	81.15(12)
P(1) - P(10)	96.93(13)	P(2)-Pt-O(1)	82.21(12)
P(2) - P(-C(10))	100.01(13)	(1)-Pt- (10)	176.8(2)
P(-P(1)-Q(11))	102.8(2)	P(-P(1)-U(121))	110.4(2)
P(-P(1)-Q(131))	124.15(15)	Q(11) - P(1) - Q(121)	106.7(2)
(111) - P(1) - Q(131)	106.0(2)	Q(121) - P(1) - Q(131)	105.5(2)
P(-P(2)-C(2))	104.6(2)	Pt-P(2)-C(221)	116.9(2)
P(-P(2)-Q(231))	116.64(15)	C(211) - P(2) - C(221)	106.7(2)
(211) - P(2) - (231)	104.7(2)	C(221) - P(2) - C(231)	106.2(2)
H-U(1)-U(2)	120.8(3)	$\mathbf{Pt} - \mathbf{Q}(1) - \mathbf{Q}(6)$	122.2(3)
(1) (1)	117.0(3)	(1) - (2) - (3)	121.0(4)
C(2) - C(2) - C(1)	117.7(3)	(3)-(2)-(111)	121.3(4)
C(4) = C(5) = C(4)	121.0(5)	(13) - (14) - (15)	119.5(4)
C(1) $C(2)$ $C(2)$	120.4(4)	(1) - (1) - (1)	121.1(4)
C(1) - C(0) - C(211) Pt $C(10) - C(11)$	110.0(3)	(13) - (16) - (12)	120.0(4)
P(-Q(10)-Q(11))	119.2(2)	P(-Q(10)-Q(12))	123.3(3)
O(11) - O(12) P(1) = O(121) = O(122)	117.5(3)	P(1) - Q(111) - Q(2)	106.5(3)
P(1) = Q(121) = Q(122)	117.9(3)	P(1) = Q(121) = Q(126)	122.8(3)
C(122) = C(121) = C(120)	119.3(4)	(121) - (122) - (123)	119.5(5)
(122) - ((123) - ((124))	120.9(5)	C(123) = C(124) = C(125)	119.6(6)
C(124) - C(125) - C(126)	121.5(7)	C(121) = C(126) = C(125)	119.0(5)
P(1) = Q(131) = Q(132)	119.5(4)	P(1) - Q(131) - Q(136)	121.4(3)
C(132) - C(131) - C(130)	119.2(4)	(131) - (132) - (133)	119.2(5)
C(134) = C(135) = C(134)	121.2(3)	(133) - ((134) - ((135))	120.2(6)
$\nabla(1)^{+} - \nabla(1)^{-} - \nabla(1)^{-} = \nabla(1)^{-} = \nabla(1)^{-} - \nabla(1)^{-} = \nabla(1)^{-} $	100 2(2)	U(131) - U(130) - U(133)	119.0(5)
P(2) = C(211) = C(0)	107.3(3)	$\mathbf{F}(2) = \bigcup_{i \in \mathcal{I}} \mathbf{F}(2) = \bigcup_{i \in \mathcal{I}} \mathbf{F}(2)$	118.4(3)
$\Gamma(2) = \bigcup_{i \in I} Z_{ii} = \bigcup_{i$	122.7(3)	(1222) - (1221) - (1226)	118.8(4)
(1221) - ((222) - ((223))	117.0(3)	(1222) - (1223) - (1224)	120.8(5)
(223) - (224) - (223)	120.4(0)	$U_{224} = U_{225} = U_{226}$	120.8(6)
(1221) - (1220) - (1220)	119.0(5)	r(2) - ((231) - ((232))	119.3(4)
$\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}$	122.3(3)	(232) - (231) - (236)	118.4(4)
C(231) = C(232) = C(233) C(232) = C(234) = C(235)	120.0(3)	(232) - ((233) - ((234))	120.5(4)
(433)-((434)-((233)	120.0(4)	(1234)-((235)-((236)	119.9(6)

within experimental error, to their counterparts in 1, whereas the Pt-P distances [Pt-P(1) 2.261(1) Å, Pt-P(2) 2.269(1) Å] are slightly less than those in 1 [2.279(3) Å, 2.283(3) Å]. The coordination plane and the carboxylate group in 12 are almost orthogonal, the dihedral angle being 79.7(1)°. The corresponding values in 1 and in *trans*-Pt(CO₂Et)₂(PPh₃)₂ [16] are 78.0° and 80.8°, respectively. The benzene molecules in the crystal of 12 do not appear to interact significantly with other parts of the structure and simply occupy interstices in the lattice.

We suggest that the weaker association in the solid state between the carboxylate units in 12 relative to those in 1 can be correlated with the greater tendency of 12 to dissociate to monomer in CH_2Cl_2 , as judged by IR spectroscopy. The difference may be a consequence of steric crowding induced by the bulky PPh₂ groups and by the somewhat shorter Pt-P distances, although obviously electronic effects may also play a role.

3. Experimental details

All reactions were performed under nitrogen by use of standard Schlenk techniques, although the isolated complexes were air-stable in the solid state. Most hydrocarbon and ether solvents were dried by distillation from sodium benzophenone ketyl/tetraglyme. Mesitylene and 2-methoxyethanol were dried over 3 Å molecular sieves and nitrogen gas was bubbled through them for 30-50 min. The following instruments were used for spectroscopic measurements: Jeol FX-200 (¹H NMR, 200 MHz; ¹³C NMR, 50.1 MHz), Varian XL-200 (¹H NMR, 200 MHz; ¹³C NMR, 50.3 MHz; ³¹P NMR, 81.0 MHz), Jeol FX-60 (³¹P NMR, 24.2 MHz), and Perkin Elmer 683 and FT 1800 (IR). Elemental analyses were performed in-house. The compounds PtX_2 -(COD) (X = Cl [17], I [18]), PtCl(CH₃)(COD) [18] and 1,3-C₆H₄(CH₂P^tBu₂)₂ [7] were prepared by literature methods. The ligand $1,3-C_6H_4(CH_2PPh_2)_2$ was made in ca. 60% yield by the reaction of $1,3-C_6H_4(CH_2Br)_2$ with NaPPh, in liquid ammonia according to Rimml [9]. Analytical and selected IR data are in Table 1, NMR data are in Table 2.

3.1. Preparations

3.1.1. 2,6-($\{Di-t-butylphosphino\}methyl\}methyl\}phen$ $yl)iodoplatinum(II), <math>PtI\{C_6H_3(CH_2P^*Bu_2)_2,2,6\}$ (5)

A mixture of $PtI_2(COD)$ (1.7 g, 3.1 mmol) and 1,3-C₆H₄(CH₂P^tBu₂)₂ (**3b**) (1.26 g, 3.2 mmol) in 2methoxyethanol (40 ml) was stirred and heated under reflux overnight. The solution was evaporated to dryness under reduced pressure and the orange-red solid residue was dissolved in dichloromethane (*ca.* 15 ml). The solution was treated with ethanol until solid just began to precipitate and then set aside at -5° C overnight. The cream crystalline solid that separated (1.14 g) was removed by filtration and more solid (0.48 g) was obtained by addition of water to the red filtrate. The total yield of **5** was 70%. The product did not melt below 230°C.

3.1.2. 2,6-({(Diphenylphosphino)methyl}phenylplatinum(II) complexes

3.1.2.1. $PtCl\{C_6H_3(CH_2PPh_2)_2-2,6\}$ (6). (a) A slurry of PtCl(CH₃)(COD) (60 mg, 0.17 mmol) in 2methoxyethanol (5 ml) was treated with a solution of 1,3-C₆H₄(CH₂PPh₂)₂ (**3a**) (80 mg, 0.17 mmol) in 2methoxyethanol (10 ml) and the mixture was heated under reflux overnight. The solution was allowed to cool to room temperature and the volume was reduced to *ca*. 10 ml under reduced pressure. The colourless solid that separated was separated by filtration, washed successively with ethanol, water and again with ethanol, and dried in a vacuum to give **6** (100 mg, 83%).

(b) A suspension of $PtCl_2(COD)$ (1.6 g, 4.2 mmol) and **3a** (2.0 g, 4.2 mmol) in mesitylene (250 ml) was heated to reflux and 2-(methylamino)ethanol (0.5 ml) was added carefully. The mixture was stirred vigorously under reflux overnight. The pale brown solution was allowed to cool to room temperature and filtered through Celite to remove a small amount of black solid. The filtrate was evaporate to dryness and the brown, sticky residue was treated with ethanol (2 × 20 ml). The resulting cream solid was dried in a vacuum to give 2.1 g (72%) of **6**, the NMR and IR spectra of which were identical with that obtained in (a).

TABLE 4 (continued)

120.6(4)	C(52)-C(51)-C(56)	122.8(10)
120.0(9)	C(52)-C(53)-C(54)	120.6(11)
113.8(14)	C(54)-C(55)-C(56)	123.7(14)
119.0(11)	C(63)'-C(61)-C(62)	120.7(6)
119.8(5)	C(62)-C(63)-C(61)'	119.6(5)
	120.6(4) 120.0(9) 113.8(14) 119.0(11) 119.8(5)	$\begin{array}{cccc} 120.6(4) & C(52)-C(51)-C(56) \\ 120.0(9) & C(52)-C(53)-C(54) \\ 113.8(14) & C(54)-C(55)-C(56) \\ 119.0(11) & C(63)'-C(61)-C(62) \\ 119.8(5) & C(62)-C(63)-C(61)' \end{array}$

^a Primes indicate atoms transformed by the symmetry operation (1 - x, 1 - y, 1 - z).

15C.H. (12.15C.H.)

3.1.2.2. $Pt(OH) \{C_6H_3(CH_2PPh_2)_2 - 2,6\}$ (11). A solution of 6 (200 mg, 0.28 mmol) in THF (25 ml) was treated with a solution of AgBF₄ (60 mg, 0.31 mmol) in THF (2 ml) at room temperature for 3 h. The precipitate of AgCl was removed by centrifugation and the pale yellow filtrate was treated with a solution of KOH (20 mg, 0.36 mmol) in water (1 ml). The solution was stirred overnight, filtered to remove a small amount of black solid, and evaporated to dryness under reduced pressure. The residue was recrystallized from THF/ether to give 11 as a pale yellow powder, m.p. 128-134°C (120 mg, 63%).

3.1.2.3. $Pt(CO_2H)\{C_6H_3(CH_2PPh_2)_2-2,6\}$ (12). A solution of 11 (60 mg, 0.09 mmol) in benzene (10 ml) in a 100 ml Schlenk flask was treated with CO (100 mm Hg) overnight. The colourless crystals that precipitated were filtered off, washed with benzene/ether (1:1), and dried in a vacuum. The yield of 12 was 60 mg (93%). X-ray crystallography (see below) showed that, before being dried in a vacuum, the crystals contained 1.5 mol of C_6H_6 per mol of 12.

3.1.2.4. $Pt(CO_2Me)\{C_6H_3(CH_2PPh_2)_2-2,6\}$ (13). A solution of 12 (60 mg, 0.08 mmol) in benzene (20 ml) was treated with methanol (3 ml) and the mixture was stirred overnight. Evaporation to dryness gave a pale yellow solid, which was washed with ether and dried in a vacuum to give 13 (50 mg, 86%) as a colourless solid.

4. Crystallography

A crystal of 12, obtained directly from the reaction (3) above, was coated with a thin film of epoxy resin and sealed in a thin-walled glass capillary. X-ray photographs showed the crystal to be of good quality. The crystal was transferred to a Philips PW1100/20 diffractometer equipped with Mo K α radiation and unit cell dimensions were determined by least squares analysis of the setting angles of the α_1 peaks of 25 reflections $(39^{\circ} < 2\theta < 46^{\circ})$, which were accurately centred on the counter $[\lambda(\alpha_1) = 0.70930 \text{ Å}]$. Crystal data are given in Table 5. The intensities of reflections $\pm h$, $\pm k$, l were collected as outlined in Table 6. Three standards measured every 90 min showed a small decrease in intensity during data collection (ca. 1%) and data were corrected accordingly [19]. Data were also corrected for absorption; A^* ranged from 2.030 to 1.660 [20-22].

The shellxs-86 computer program [23] was used to solve the structure by direct methods in space group $P\overline{1}$, and XTAL2.4 [20] was used for subsequent calculations. Successful refinement confirmed the selection of $P\overline{1}$ as the space group. The non-hydrogen atoms were refined initially with isotropic and then with anisotropic

100010 (1000-0)			
Formula	C ₄₂ H ₃₇ O ₂ P ₂ Pt		
FW	830.78		
Cryst. system	triclinic		
Space group	PĪ		
a (Å)	10.582(1)		
b (Å)	12.326(2)		
c (Å)	14.733(2)		
α (°)	89.10(2)		
β (°)	84.32(2)		
γ(°)	69.62(2)		
V (Å)	1792.2		
Ζ	2		
$\rho_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1.539		
μ (cm ⁻¹)	40.7 ^ь		

TABLE 5. Crystal data for Pt(CO₂H){C₆H₃(CH₂PPh₂)₂-2,6}.

^a Ambient temperature 24(± 2)°C. ^b Mo K α radiation.

thermal parameters. Hydrogen atoms (with the exception of the one on the carboxylate group) were included at their calculated positions [r(C-H) = 0.95 Å]. Careful examination of a difference electron-density map [24,25] showed two discrete maxima along the vector between O(11) and O(12) of an adjacent molecule to which it is apparently hydrogen-bonded (Fig. 1), suggesting that the hydrogen atom is disordered over two sites. The fact that the C(10)-O distances are almost equal confirms that the hydrogen atom is not exclusively bound to O(11) or O(12) (Fig. 1), so hydrogen atoms of occupancy 0.5 were placed at each site. Hydrogen atom parameters were not refined but their coordinates were calculated periodically during the refinement.

TABLE 6. Data collection and refinement for $Pt(CO_2H)(C_6H_3(CH_2-PPh_2)_2-2,6)\cdot 1.5C_6H_6$ (12 · 1.5C₆H₆)

Diffractometer	Philips PW1100/20
Radiation	Mo K α , graphite monochromator
λ of radiation (Å)	0.71069 (ā)
Scan mode	$\theta - 2\theta$
θ scan width (°)	$0.80 + 0.346 \tan \theta$
θ scan speed (° min ⁻¹)	2
Background	stationary counts of 6s at each side of every scan
Crystal size (mm)	0.33×0.23×0.18
2θ range (°)	4–54
No. unique reflns	7865
Obs. refins ^a	6623
No. variables	424
Final R _F ^b	0.025 °
Final R_{wF}^{d}	0.030 °
Final s ^e	1.03 ^c

^a Reflections with $I > 3\sigma(I)$. ^b $R_F = \Sigma ||F_o| - |F_c|| / |F_o|$. ^c Observed reflections only. ^d $R_{wF} = [\Sigma_w(|F_o| - |F_c|)^2 / \Sigma_w |F_o|^2]^{1/2}$. ^e $s = [\Sigma_w(|F_o| - |F_c|)^2 / (No. obs - no. var)]^{1/2}$. Least-squares refinement was continued until shift/ error ratios for all parameters were less than 0.1. The largest features in a final difference electron-density map were close to the platinum atom. The function minimized in least-squares refinement was $\sum w(|F_o| - |F_c|)^2$. Block-diagonal refinement (unit weights) was used in the early stages and full-matrix ($w = 1/((\sigma(F))^2 + 0.0004(F)^2)$) in the final cycles. Computer programs were run on a VAX 8700 computer. Neutral-atom scattering factors with anomalous dispersion corrections were used throughout [22]. Diagrams were drawn with the aid of ORTEP [26].

Hydrogen atom parameters, temperature factors for the non-hydrogen atoms, selected least-squares planes, torsion angles, additional distances and angles and structure factor amplitudes are available from the authors.

Acknowledgments

We thank Professor L.M. Venanzi, ETH Zürich, for sending us a copy of ref. 9 and Mr. Horst Neumann for the preparation of **2a**.

References

- 1 H. E. Bryndza and W. Tam, Chem Rev., 88 (1988) 1163.
- 2 T. G. Appleton and M. A. Bennett, J. Organomet. Chem., 55 (1973) C89.
- 3 M. A. Bennett and A. Rokicki, Organometallics, 4 (1985) 180.
- 4 R. A. Michelin, M. Napoli and A. Ros, J. Organomet. Chem., 175 (1979) 239.
- 5 I. Torresan, R. A. Michelin, A. Marsella, A. Zanardo, F. Pinna and G. Strukul, Organometallics, 10 (1991) 623.

- 6 M. A. Bennett, G. B. Robertson, A. Rokicki and W. A. Wickramasinghe, J. Am. Chem. Soc., 110 (1988) 7098.
- 7 C. J. Moulton and B. L. Shaw, J. Chem. Soc. Dalton Trans. (1976) 1020.
- 8 H. Rimml and L. M. Venanzi, J. Organomet. Chem., 259 (1983) C6.
- 9 H. Rimml, PhD Thesis, ETH Zürich, 1984.
- 10 M. A. Bennett, R. N. Johnson, G. B. Robertson, I. B. Tomkins and P.O. Whimp, J. Am. Chem. Soc., 98 (1976) 3514.
- 11 A. J. Cheney, B. E. Mann, B. L. Shaw and R. M. Slade, J. Chem. Soc. Dalton Trans. (A), (1971) 3833.
- 12 P. S. Pregosin and R. W. Kunz, ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes, Springer-Verlag, Berlin, 1979, p. 97.
- 13 D. M. Adams, J. Chatt, J. Gerratt and A. D. Westland, J. Chem. Soc. (1964) 734.
- 14 D. M. Grove, G. van Koten, H. J. C. Ubbels, R. Zoet and A. L. Spek, Organometallics, 3 (1984) 1003.
- 15 M. Catellani and J. Halpern, Inorg. Chem., 19 (1980) 566.
- 16 P. L. Bellon, M. Manassero, F. Porta and M. Sansoni, J. Organomet. Chem., 80 (1974) 139.
- 17 J. X. McDermott, J. F. White and G. M. Whitesides, J. Am. Chem. Soc., 98 (1976) 6521.
- 18 H. C. Clark and L. E. Manzer, J. Organomet. Chem., 59 (1973) 411.
- 19 M. R. Churchill and K. L. Kalra, Inorg. Chem., 13 (1974) 1427.
- 20 S. R. Hall and J. M. Stewart (eds.) *xTAL 2.4 User's Manual*, Universities of Western Australia and Maryland, 1988.
- 21 W. R. Busing and H. A. Levy, Acta Crystallogr. 10 (1957) 180; G. Davenport, L. M. Engelhardt, E. N. Maslen and J. M. Stewart, ABSORB in ref. 20.
- 22 International Tables for X-Ray Crystallography, Vol 4, Kynoch Press, Birmingham, 1974, pp. 61–66, 99–101, 149–150 (distributed by Kluwer Academic Publishers, Dordrecht, Holland).
- 23 G. M. Sheldrick in ed. G. M. Sheldrick, C. Krüger and R. Goddard, *Crystallographic Computing 3*, Oxford University Press, 1985, p. 175.
- 24 N. Spadaccini and R. Alden, SLANT in ref. 20.
- 25 M. Spackman, CONTRS in ref. 20.
- 26 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1971; G. Davenport, S. R. Hall and W. Dreissig, ORTEP in ref. 20.